
ReactiveML and JoCaml:

two concurrent extensions of OCaml

Louis Mandel

louis.mandel@lri.fr

Laboratoire de Recherche en Informatique

Université Paris-Sud 11

Synchron’08 – 03/12/2008

Programming of concurrent systems

General purpose programming language + dedicated constructs

Two experiments above Ocaml:

� Synchronous: ReactiveML

� based on the synchronous reactive model of Boussinot

� Programming systems with a lot of concurrence, communication and

synchronisation

� Interests: determinism, compositionnality, safety

� Asynchronous: JoCaml (Luc Maranget)

� Based on the join-calculus

� Programming of distributed systems

� Interests: parallel execution

2/21

ReactiveML

killable

signal kill

val kill : (int, int list) event

let process killable p =

let id = gen_id () in print_endline ("["^(string_of_int id)^"]");

do run p

until kill(ids) when List.mem id ids done

val killable : unit process -> unit process

4/21

Dynamic creation: reminder

let rec process extend to_add =

await to_add(p) in

run p || run (extend to_add)

val extend : (’a, ’b process) event -> unit process

signal to_add

default process ()

gather (fun p q -> process (run p || run q))

val add_to_me : (unit process, unit process) event

5/21

Dynamic creation with state

let rec process extend to_add state =

await to_add(p) in

run (p state) || run (extend to_add state)

val extend : (’a , (’b -> ’c process)) event -> ’b -> unit process

signal to_add

default (fun s -> process ())

gather (fun p q s -> process (run (p s) || run (q s)))

val to_add : ((’_state -> unit process) , (’_state -> unit process)) event

6/21

extensible

signal add

val add : ((int * (state -> unit process)),

(int * (state -> unit process)) list) event

let process extensible p_init state =

let id = gen_id () in print_endline ("{"^(string_of_int id)^"}");

signal add_to_me

default (fun s -> process ())

gather (fun p q s -> process (run (p s) || run (q s))) in

run (p_init state) || run (extend add_to_me state)

|| loop

await add(ids) in

List.iter (fun (x,p) -> if x = id then emit add_to_me p) ids

end

val extensible : (state -> ’a process) -> state -> unit process

7/21

JoCaml

JoCaml: one place buffer

let create () =

def some(v) & get() = none() & reply v to get

or none() & put(v) = some(v) & reply () to put

in

spawn none() ; (* buffer initially empty *)

(put, get)

9/21

JoCaml: infinite buffer

let create () =

def state(xs,y::ys) & get() =

state(xs,ys) & reply y to get

or state(xs,ys) & put(x) =

state(x::xs,ys) & reply () to put

or state(_::_ as xs,[]) & get() =

state([],List.rev xs) & reply get() to get

in

spawn state([],[]) ; (* buffer initially empty *)

(put, get)

10/21

Boids

Simulation of a flock of birds, a school of fish . . .

Main points:

• ReactiveML and JoCaml collaboration

• centralized and distributed execution

• channels mobility, dynamic aspects

• failure detection, timeout

11/21

Boids

floflo

server

machiavel

12/21

Boids

1/[]

boids 1 floflo

server

machiavel

13/21

Boids

2/[1]

boids 2boids 1 floflo

server

machiavel

14/21

Boids

boids 2boids 1 floflo

server

machiavel

15/21

Boids

3/[1;2]

boids 3

boids 2boids 1 floflo

server

machiavel

16/21

Boids

boids 3

boids 2boids 1 floflo

server

machiavel

17/21

Boids

boids 3

boids 1 floflo

server

machiavel

18/21

Boids

4/[1;3]

boids 4

boids 3

boids 1 floflo

server

machiavel

19/21

Boids

boids 4

boids 3

boids 1 floflo

server

machiavel

20/21

Implementations are Available

http://rml.lri.fr

http://jocaml.inria.fr

21/21

Asynchronous Communication

let new_cell () =

def state (_) & set(x) = state(Some x) & reply () to set

or state (Some x) & get() = state(None) & reply x to get in

spawn (state None);

(set, get)

val new_cell : (’a -> unit process, unit -> ’a process)

let set_step, get_step = new_cell()

let process generate_step =

loop let n = run (get_step ()) in emit step n ; pause end

22/21

23/21

