Contracts for modular discrete controller synthesis

Gwenaél Delavall Hervé Marchand! Eric Rutten?

1INRIA Rennes, VerTeCs project

2INRIA Rhone-Alpes, Pop-Art project

December 4th, 2008 — Aussois

Introduction

Motivation: introduction of discrete controller synthesis into a
modular compilation process

Modularity motivations:

o Easier usability from a programmer’s point of view

@ Scalability (critical for methods implying state space
exploration)

@ Dealing with abstract components/IP blocks/...

Outline

@ Discrete Controller Synthesis
© Contracts

© Modular DCS

@ Controller execution

Example
(5) p

@ Conclusion

DCs

Discrete controller synthesis: principle

Enforcing a temporal property ® on a system (on which P does not
a priori hold)

DCs

Discrete controller synthesis: principle

Enforcing a temporal property ® on a system (on which P does not
a priori hold)

Principle (on implicit equational representation)

X memory
P transition function
O output function

DCs

Discrete controller synthesis: principle

Enforcing a temporal property ® on a system (on which P does not
a priori hold)

Principle (on implicit equational representation)

X memory
P transition function
O output function

@ Partition of inputs into controllable (/) and uncontrollable
(1) inputs

DCs

Discrete controller synthesis: principle

Enforcing a temporal property ® on a system (on which P does not
a priori hold)

Principle (on implicit equational representation)

X memory
P transition function
O output function

@ Partition of inputs into controllable (/) and uncontrollable
(1) inputs

e Computation of a controller K(X,/,) such as the system
controlled by K satisfies ®

DCs

DCS tool: Sigali

Use of an existing tool, Sigali (INRIA Rennes, VerTeCs and
Espresso)

From:

@ a polynomial dynamic system (PDS) S, with

X' = P(X,1)
S0 = { Qo (X)
@ a partition | = I, W I,
@ an invariance property ¢ = VLG
Sigali will compute K = DCS(S, I, ®), K(X, I, Ic) being the most
permissive controller for S satisfying ®

Contracts
Contracts and validation

(A, G)

(A1, Gr)

L] (A, G)
B |

From the environment hypothesis (A, = [IG;, i € {1,...,n},
check that A = G

r L (4. 6)
<]

Contracts
Proposal: contracts and DCS

(A, G) with I,

(Al, Gl) Wlth /cl

LI (A, G,) with 1.,

E]

o To each contract, associate controllable additional variables,
local to the component

Contracts

Proposal: contracts and DCS

(A, G) with I, — K

(Al, Gl) Wlth /(_-1 — Kl

LI (A, G,) with I, — K,

E]

o To each contract, associate controllable additional variables,
local to the component

e Compute a local controller for each component

Modular DCS

Language extension

Extension of the Heptagon/MiniLustre language (LRI, Demons)
with a contract syntax:

node f(xg,...,x,) returns (yi,...,yp)
contract
let
vi = (X1, XnsY1,---,Yp)s
tel
assume €,(X1,...,Xp,¥1,---,YpsVi)
enforce eg(x1,...,Xn,¥1,...,¥p,Vvi) with (c1,...,cm)
let
yi = fi(le"'vxnayla"'ayprcl)"'vcm);

tel

Modular DCS

Translation into PDS

Computation of two PDS for each node f: S¢ for the body, Sf for
the contract.

D—(S,1y,1:,C)

Translation of equations D into PDS S

Additional uncontrollable inputs /, from non-inlined
applications

Additional controllable inputs /. from inlined applications

@ Set of contracts C to be enforced

Modular DCS
Translation: inlined applications

node f(xi1,...,X,) returns (yi,...,¥p)

contract (A, G) with /¢

!

X' = Pe(X,x1,. .. Xn, Ic)
Se(X, {xt o XY W) =
f({Xl Xn} C) { QOf(X)

(z1,...,2p) = inlined f(eq,...,€n)

l

(Sf[E,'/X,‘,Zi/Yi], (Z)’ 7C’ {(A[ei/xivzi/yf]v G[e,-/x,-,z,-/y,-])})

@ Inlining by renaming variables of PDS S¢: no “textual” inlining
@ No uncontrollable inputs added

@ “Phantom” controllable inputs from f’s controller

Modular DCS
Translation: applications

node f(xq,...,xp) returns (y1,...,¥p)
contract (A, G) with /¢
!
X/:Pf(X X1y...4Xn /C)
SC)<7 PRI ¥ B} goeey — Y I 9 9
F(X Da Xn; Y1 Yp}) { Qor (X)
(21"'-7Zp):f(61,...,en)
!

(Stlei/xiszi/yili {21, - -+, 2}, 0, {(Alei/xi, zi [yil, Glei/xi, zi /yi]) })

o Inlining of the contract S¢
e Outputs z1,..., 2, are added as uncontrollable inputs
@ No additional controllable inputs

Modular DCS
Synthesis objective

For the node:

node f(xi,...,X,) returns (y1,...,¥p)
contract (A, G) with /¢
let D tel

@ Translate the equations:

D— (S0, 1L {CL, .., Ca})

YUY e

e With PDS S = S'(X,{x1,...,xa} W1, Wl WI): compute
K = DCS(S, Ic W IL, ®) with:

® = VEl((Al = G)A.. A(Ar = Gp) = (A= (GAALA. . ./\A,,)))

Controller execution

Controller triangulation

For the execution of the controller, we need to compute from K a
set of equations D, to be “weaven” into the initial node by parallel
composition.

The result K of the DCS is the most permissive controller: relation
K(X,ly,c1,...,¢Cn).

From K, compute Triang(K) = {K1,...,Kn}, such as:

a = Ki(X, Iy, &)
o = Ko(X, Iy, c1,&)

cn = Kn(X, Iy, c1,. .., Cn1, 82)

Controller execution

Causality issues

Some inputs in /,, added to represent non-inlined applications
outputs, can depend on some controllable variables.

node f(x1,x2:bool) returns (yl,y2)

contract

enforce ... with (cl,c2:bool)
let

yl = g(xl,cl);

y2 = g(x2,c2);
tel

We have here ¢; < y;1 and & < yo: y1 and y» must be quantified
while performing triangulation.

€= VY17)’27K1(X1,X2,)/1,}/2,&1)
o = Vyo, Ko(x1, X2, y1,¥2, €1, &)

Example: delayable tasks

node delayable(r,c,e:bool) returns (act:bool)
let
automaton
state Idle
do act = false
until r & ¢ then Active
until a & not ¢ then Wait
state Wait
do act = false
until ¢ then Active
state Active
do act = true
until e then Idle
end
tel

Example (cont'd)

Set of n exlusive delayable tasks

node ntasks(n,...,r,,e1,...,6,) returns (ai,...,a:bool)
contract
let

ca; = a; & (ap or ... or a,);

cap_1 = ap_1 & ap;

tel

enforce not (ca; or ... or cap_1) with (ci,...,¢cp)
let

ap = inlined delayable(r,ci,e1);

a, = inlined delayable(rn,cCn,e€n);

tel

Example: composition

node main(r,...,mp,€1,...,6,) returns (ay,...,az,:bool)
contract
let

ca; = a; & (ap or ... or asy);

cazp—1 = azp—1 & agy;

tel
enforce not (ca; or ... or cas,—1) with ()
let
(a1,...,ap) = ntasks(r,...,rp,€1,...,€p);
(a,,+1,...,ag,,) = ntasks(r,H_l,...,r2,,,e,,+1,...,eg,,);
tel

— the contract of ntasks is not controllable enough to enforce
the main contract

Example (refinement, naive version)

Contract refinement for composition of several ntasks components:

node ntasks(c,rn,...,r,€1,...,€,) returns (ai,...,a,:bool)
contract
let
cag = a3 & (ap or ... or ap);...
Cap—1 = ap-1 & an;
one = a3 Or ... Or a,;
tel
enforce not (ca; or ... or cap_1) & (c or not one)
with (c1,...,Cn)
let
ay = inlined delayable(r;,ci,e1);
a, = inlined delayable(rpn,cCn,e€n);

tel

Example: composition, 2nd try

node main(r,...,Mms,€1,...,6,) returns (ai,...,ay,:bool)
contract
let
ca; = aj; & (ap or ... or asy);

capp—1 = agp—1 & apy;

tel

enforce not (ca; or ... or cap,_1) with (c:bool)
let

(ai,...,an) = ntasks(c,n,...,rm,€1,...,€n);

(aps1,...,ap) = ntasks(not ¢,rfmit,...,2ns€nily---,€n)5
tel

— Synthesis succeed, but the controllers of ntasks cannot allow
the tasks to go into the active state !

Example (refinement, correct version)

Use of environment hypothesis to allow more permissive behaviours:

node ntasks(c,rn,...,r,e1,...,€,) returns (ai,...,a,:bool)
contract
let
cag = a3 & (ap or ... or ap);...
Cap—1 = ap-1 & an;
one = a; Or ... Or a,;
pone = false fby one;
tel

assume (not pone or c)

enforce not (ca; or ... or cap—_1) & (c or not one)

with (c1,...,¢p)

let
ay = inlined delayable(r;,ci,e1);
a, = inlined delayable(rn,cCn,e€n);

tel

Contribution

o Method for use of contracts for modular controller synthesis

@ Integration of an existing controller synthesis tool into a
modular compilation process

@ Implementation into an existing modular compiler: method
accessible through a programming language

Conclusion

Conclusion

Prospects

o Diagnosis issues:
e Synthesis can fail: path of uncontrollable events leading to
error states
e The controller computed can be too strong, e.g., restrict the
system or some part of it to stay in its initial state
o During controller triangulation, quantification can fail

@ Decentralized control and program distribution

[)
V) vt
K K>

@ Interaction with non-boolean parts/other program
transformation or validation methods

Conclusion

Prospects

o Diagnosis issues:
e Synthesis can fail: path of uncontrollable events leading to
error states
e The controller computed can be too strong, e.g., restrict the
system or some part of it to stay in its initial state
o During controller triangulation, quantification can fail

@ Decentralized control and program distribution

P P,
[R)]
K>

@ Interaction with non-boolean parts/other program
transformation or validation methods

	Discrete Controller Synthesis
	Contracts
	Modular DCS
	Controller execution
	Example
	Conclusion

