
Contracts for modular discrete controller synthesis

Gwenaël Delaval1 Hervé Marchand1 Éric Rutten2

1INRIA Rennes, VerTeCs project

2INRIA Rhône-Alpes, Pop-Art project

December 4th, 2008 � Aussois



DCS Contracts Modular DCS Controller execution Example Conclusion

Introduction

Motivation: introduction of discrete controller synthesis into a
modular compilation process

Modularity motivations:

Easier usability from a programmer's point of view

Scalability (critical for methods implying state space
exploration)

Dealing with abstract components/IP blocks/...



DCS Contracts Modular DCS Controller execution Example Conclusion

Outline

1 Discrete Controller Synthesis

2 Contracts

3 Modular DCS

4 Controller execution

5 Example

6 Conclusion



DCS Contracts Modular DCS Controller execution Example Conclusion

Discrete controller synthesis: principle

Goal

Enforcing a temporal property Φ on a system (on which P does not
a priori hold)

Principle (on implicit equational representation)

X memory
P transition function
O output function

Partition of inputs into controllable (Ic) and uncontrollable
(Iu) inputs

Computation of a controller K (X , I , Ic) such as the system
controlled by K satis�es Φ



DCS Contracts Modular DCS Controller execution Example Conclusion

Discrete controller synthesis: principle

Goal

Enforcing a temporal property Φ on a system (on which P does not
a priori hold)

Principle (on implicit equational representation)

X memory
P transition function
O output function

I XP
O

Partition of inputs into controllable (Ic) and uncontrollable
(Iu) inputs

Computation of a controller K (X , I , Ic) such as the system
controlled by K satis�es Φ



DCS Contracts Modular DCS Controller execution Example Conclusion

Discrete controller synthesis: principle

Goal

Enforcing a temporal property Φ on a system (on which P does not
a priori hold)

Principle (on implicit equational representation)

X memory
P transition function
O output function Ic

Iu

I XP
O

Partition of inputs into controllable (Ic) and uncontrollable
(Iu) inputs

Computation of a controller K (X , I , Ic) such as the system
controlled by K satis�es Φ



DCS Contracts Modular DCS Controller execution Example Conclusion

Discrete controller synthesis: principle

Goal

Enforcing a temporal property Φ on a system (on which P does not
a priori hold)

Principle (on implicit equational representation)

X memory
P transition function
O output function

K
Ic

Iu

I XP
O

Partition of inputs into controllable (Ic) and uncontrollable
(Iu) inputs

Computation of a controller K (X , I , Ic) such as the system
controlled by K satis�es Φ



DCS Contracts Modular DCS Controller execution Example Conclusion

DCS tool: Sigali

Use of an existing tool, Sigali (INRIA Rennes, VerTeCs and
Espresso)

From:

a polynomial dynamic system (PDS) S , with

S(X , I ) =

{
X ′ = P(X , I )
Q0(X )

a partition I = Iu ] Ic
an invariance property Φ = ∀�G

Sigali will compute K = DCS(S , Ic , Φ), K (X , Iu, Ic) being the most
permissive controller for S satisfying Φ



DCS Contracts Modular DCS Controller execution Example Conclusion

Contracts and validation

(A,G )

(An,Gn)

(A1,G1)

From the environment hypothesis �Ai ⇒ �Gi , i ∈ {1, . . . , n},
check that �A⇒ �G



DCS Contracts Modular DCS Controller execution Example Conclusion

Proposal: contracts and DCS

(A,G )

with Ic → K

(An,Gn)

with Icn → Kn

(A1,G1)

with Ic1 → K1

To each contract, associate controllable additional variables,
local to the component

Compute a local controller for each component



DCS Contracts Modular DCS Controller execution Example Conclusion

Proposal: contracts and DCS

(A,G ) with Ic

→ K

(An,Gn) with Icn

→ Kn

(A1,G1) with Ic1

→ K1

To each contract, associate controllable additional variables,
local to the component

Compute a local controller for each component



DCS Contracts Modular DCS Controller execution Example Conclusion

Proposal: contracts and DCS

(A,G ) with Ic → K

(An,Gn) with Icn → Kn

(A1,G1) with Ic1 → K1

To each contract, associate controllable additional variables,
local to the component

Compute a local controller for each component



DCS Contracts Modular DCS Controller execution Example Conclusion

Language extension

Extension of the Heptagon/MiniLustre language (LRI, Demons)
with a contract syntax:

node f(x1, . . . ,xn) returns (y1, . . . ,yp)
contract

let

vi = ei(x1, . . . ,xn,y1, . . . ,yp);
...

tel

assume ea(x1, . . . ,xn,y1, . . . ,yp,vi)
enforce eg(x1, . . . ,xn,y1, . . . ,yp,vi) with (c1, . . . ,cm)

let

yi = fi(x1, . . . ,xn,y1, . . . ,yp,c1, . . . ,cm);
...

tel



DCS Contracts Modular DCS Controller execution Example Conclusion

Translation into PDS

Computation of two PDS for each node f : Sf for the body, Sc
f for

the contract.

D −→ (S , Iu, Ic , C)

Translation of equations D into PDS S

Additional uncontrollable inputs Iu from non-inlined
applications

Additional controllable inputs Ic from inlined applications

Set of contracts C to be enforced



DCS Contracts Modular DCS Controller execution Example Conclusion

Translation: inlined applications

node f (x1, . . . , xn) returns (y1, . . . , yp)
contract (A,G ) with Ic

↓

Sf (X , {x1, . . . , xn} ] Ic) =

{
X ′ = Pf (X , x1, . . . , xn, Ic)
Q0f (X )

(z1, . . . , zp) = inlined f (e1, . . . , en)
↓

(Sf [ei/xi , zi/yi ], ∅, Îc , {(A[ei/xi , zi/yi ],G [ei/xi , zi/yi ])})

Inlining by renaming variables of PDS Sf : no �textual� inlining

No uncontrollable inputs added

�Phantom� controllable inputs from f 's controller



DCS Contracts Modular DCS Controller execution Example Conclusion

Translation: applications

node f (x1, . . . , xn) returns (y1, . . . , yp)
contract (A,G ) with Ic

↓

Sc
f (X , {x1, . . . , xn, y1, . . . , yp}) =

{
X ′ = Pf (X , x1, . . . , xn, Ic)
Q0f (X )

(z1, . . . , zp) = f (e1, . . . , en)
↓

(Sc
f [ei/xi , zi/yi ], {z1, . . . , zp}, ∅, {(A[ei/xi , zi/yi ],G [ei/xi , zi/yi ])})

Inlining of the contract Sc
f

Outputs z1, . . . , zp are added as uncontrollable inputs

No additional controllable inputs



DCS Contracts Modular DCS Controller execution Example Conclusion

Synthesis objective

For the node:

node f (x1, . . . , xn) returns (y1, . . . , yp)
contract (A,G ) with Ic

let D tel

Translate the equations:

D −→ (S ′, I ′u, I
′
c , {C1, . . . ,Cn})

With PDS S = S ′(X , {x1, . . . , xn} ] I ′u ] Ic ] I ′c): compute
K = DCS(S , Ic ] I ′c , Φ) with:

Φ = ∀�
(

(A1 ⇒ G1)∧. . .∧(An ⇒ Gn)⇒
(
A⇒ (G∧A1∧. . .∧An)

))



DCS Contracts Modular DCS Controller execution Example Conclusion

Controller triangulation

For the execution of the controller, we need to compute from K a
set of equations Dc , to be �weaven� into the initial node by parallel
composition.

The result K of the DCS is the most permissive controller: relation
K (X , Iu, c1, . . . , cn).

From K , compute Triang(K ) = {K1, . . . ,Kn}, such as:

c1 = K1(X , Iu, ĉ1)
c2 = K2(X , Iu, c1, ĉ2)
...
cn = Kn(X , Iu, c1, . . . , cn−1, ĉ2)



DCS Contracts Modular DCS Controller execution Example Conclusion

Causality issues

Some inputs in Iu, added to represent non-inlined applications
outputs, can depend on some controllable variables.

node f(x1,x2:bool) returns (y1,y2)

contract

enforce ... with (c1,c2:bool)

let

y1 = g(x1,c1);

y2 = g(x2,c2);

tel

We have here c1 ≺ y1 and c2 ≺ y2: y1 and y2 must be quanti�ed
while performing triangulation.

c1 = ∀y1, y2,K1(x1, x2, y1, y2, ĉ1)
c2 = ∀y2,K2(x1, x2, y1, y2, c1, ĉ2)



DCS Contracts Modular DCS Controller execution Example Conclusion

Example: delayable tasks

node delayable(r,c,e:bool) returns (act:bool)

let

automaton

state Idle

do act = false

until r & c then Active

until a & not c then Wait

state Wait

do act = false

until c then Active

state Active

do act = true

until e then Idle

end

tel



DCS Contracts Modular DCS Controller execution Example Conclusion

Example (cont'd)

Set of n exlusive delayable tasks

node ntasks(r1, . . . , rn,e1, . . . , en) returns (a1, . . . , an:bool)
contract

let

ca1 = a1 & (a2 or ... or an);
...

can−1 = an−1 & an;

tel

enforce not (ca1 or ... or can−1) with (c1, . . . , cn)
let

a1 = inlined delayable(r1, c1, e1);
...

an = inlined delayable(rn, cn, en);
tel



DCS Contracts Modular DCS Controller execution Example Conclusion

Example: composition

node main(r1, . . . , r2n,e1, . . . , e2n) returns (a1, . . . , a2n:bool)
contract

let

ca1 = a1 & (a2 or ... or a2n);
...

ca2n−1 = a2n−1 & a2n;

tel

enforce not (ca1 or ... or ca2n−1) with ()

let

(a1, . . . , an) = ntasks(r1, . . . , rn,e1, . . . , en);
(an+1, . . . , a2n) = ntasks(rn+1, . . . , r2n,en+1, . . . , e2n);

tel

−→ the contract of ntasks is not controllable enough to enforce
the main contract



DCS Contracts Modular DCS Controller execution Example Conclusion

Example (re�nement, naive version)

Contract re�nement for composition of several ntasks components:

node ntasks(c,r1, . . . , rn,e1, . . . , en) returns (a1, . . . , an:bool)
contract

let

ca1 = a1 & (a2 or ... or an);...

can−1 = an−1 & an;

one = a1 or . . . or an;

tel

enforce not (ca1 or ... or can−1) & (c or not one)

with (c1, . . . , cn)
let

a1 = inlined delayable(r1, c1, e1); ...

an = inlined delayable(rn, cn, en);
tel



DCS Contracts Modular DCS Controller execution Example Conclusion

Example: composition, 2nd try

node main(r1, . . . , r2n,e1, . . . , e2n) returns (a1, . . . , a2n:bool)
contract

let

ca1 = a1 & (a2 or ... or a2n);
...

ca2n−1 = a2n−1 & a2n;

tel

enforce not (ca1 or ... or ca2n−1) with (c:bool )

let

(a1, . . . , an) = ntasks(c,r1, . . . , rn,e1, . . . , en);
(an+1, . . . , a2n) = ntasks(not c,rn+1, . . . , r2n,en+1, . . . , e2n);

tel

−→ Synthesis succeed, but the controllers of ntasks cannot allow
the tasks to go into the active state !



DCS Contracts Modular DCS Controller execution Example Conclusion

Example (re�nement, correct version)

Use of environment hypothesis to allow more permissive behaviours:

node ntasks(c,r1, . . . , rn,e1, . . . , en) returns (a1, . . . , an:bool)
contract

let

ca1 = a1 & (a2 or ... or an);...

can−1 = an−1 & an;

one = a1 or . . . or an;

pone = false fby one;

tel

assume (not pone or c)

enforce not (ca1 or ... or can−1) & (c or not one)

with (c1, . . . , cn)
let

a1 = inlined delayable(r1, c1, e1); ...

an = inlined delayable(rn, cn, en);
tel



DCS Contracts Modular DCS Controller execution Example Conclusion

Contribution

Method for use of contracts for modular controller synthesis

Integration of an existing controller synthesis tool into a
modular compilation process

Implementation into an existing modular compiler: method
accessible through a programming language



DCS Contracts Modular DCS Controller execution Example Conclusion

Prospects

Diagnosis issues:
Synthesis can fail: path of uncontrollable events leading to

error states

The controller computed can be too strong, e.g., restrict the

system or some part of it to stay in its initial state

During controller triangulation, quanti�cation can fail

Decentralized control and program distribution

K1 K2

P2P1

Interaction with non-boolean parts/other program
transformation or validation methods



DCS Contracts Modular DCS Controller execution Example Conclusion

Prospects

Diagnosis issues:
Synthesis can fail: path of uncontrollable events leading to

error states

The controller computed can be too strong, e.g., restrict the

system or some part of it to stay in its initial state

During controller triangulation, quanti�cation can fail

Decentralized control and program distribution

K2

P2P1

Interaction with non-boolean parts/other program
transformation or validation methods


	Discrete Controller Synthesis
	Contracts
	Modular DCS
	Controller execution
	Example
	Conclusion

